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Abstract. A covering with dominoes of a rectilinear region is called
tatami if no four dominoes meet at any point. We describe a reduction
from planar 3SAT to Domino Tatami Covering. As a consequence it is
NP-complete to decide whether there is a perfect matching of a graph
that meets every 4-cycle, even if the graph is restricted to be an induced
subgraph of the grid-graph. The gadgets used in the reduction were dis-
covered with the help of a SAT-solver.

1 Introduction

Imagine that you want to “pave” a rectilinear driveway on the integer lattice
using 1 by 2 bricks. Sometimes this will be possible, but sometimes not, de-
pending on the shape of the driveway. Abstractly, a rectilinear driveway D is a
connected finite induced subgraph of the infinite planar grid-graph, and a paving
with bricks corresponds to a perfect matching. Since D is bipartite, various net-
work flow algorithms can be used to determine whether there is a paving in
low-order polynomial time.

However, an examination of typical paving patterns reveals that another
constraint is often enforced/desired, probably for both aesthetic reasons and
engineering reasons. The constraint is that no four bricks meet at a point. In some
recent papers, this restriction has come to be known as the tatami constraint,
because Japanese tatami mat layouts often adhere to it. The question that we
wish to address in this paper is: What is the complexity of determining whether
D has a paving also satisfying the tatami constraint? We will show that the
problem is NP-complete.

A rectilinear region is a polyomino which may have holes. We describe a
polynomial reduction from the NP-complete problem planar 3SAT to Domino
Tatami Covering (DTC). The gadgets used in the reduction were discovered with
the help of a SAT-solver.

Definition 1 (Domino Tatami Covering (DTC)).

INSTANCE: A rectilinear region R, on the integer lattice, represented, say, as
n line segments joining the corners of the polygon.

QUESTION: Can R be covered by dominoes such that no four of them meet
at any one point?
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Domino tatami coverings have an interesting combinatorial structure, eluci-
dated for rectangles in [12] and further in [5]. The results in these papers, as
well as [6, 4] are enumerative, whereas in this paper we explore tatami coverings
from a computational perspective. There is no comprehensive structure theorem
for tatami coverings of rectilinear grids, but evidently much of the structure is
still there, as is illustrated in Fig. 1.

Fig. 1. A domino tatami covering of a rectilinear region. This particular covering was
produced by a SAT-solver.

There are some previous complexity results about tilings and domino cover-
ings. Historically, perhaps the first concerned colour-constrained coverings, such
as those of Wang tiles. It is well known, for example, that covering the k×k grid
with Wang tiles is NP-complete ([8]). On the other hand tatami does not appear
to be a special case of these, nor of similar colour restrictions on dominos (e.g.
[1, 13]).

A more closely related mathematical context is found, instead, among the
graph matching problems discussed by Churchley, Huang, and Zhu, in [2]. In
their paper, an H-transverse matching of a graph G, is a matching M , such that
G −M has no subgraph H. In a tatami covering of the rectilinear grid, G is a
finite induced subgraph of the infinite grid-graph, H is a 4-cycle, and we require
a perfect matching of the edges. In fact, if the matching is not required to be
perfect, the problem is polynomial.

SAT-solvers have been applied to a broad range of industrial and mathemat-
ical problems in the last decade. Our reduction from planar 3SAT uses Minisat
([3]) to help automate gadget generation, as was also done by Ruepp and Holzer
([11]). It is easy to see that instances of other locally restricted covering problems
can be expressed as satisfiability formulae, which suggests that SAT-solvers may
provide a methodological applicability in hardness reductions involving those
problems.

2 Preliminaries

Let φ be a CNF formula, with variables U , and clauses C. The formula is planar
if there exists a planar graph G(φ) with vertex set U ∪ C and edges {u, c} ∈ E,
where one of the literals u or ū is in the clause c. When the clauses contain at
most three literals, φ is an instance of P3SAT, which is NP-complete ([9]).
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We construct an instance of DTC which emulates a given instance, φ, of P3SAT,
by replacing the parts of G(φ) with a rectilinear region, R(φ), that can be tatami-
covered with dominoes if and only if φ is satisfiable. Let n = |U∪C|. In Section 4
we show that R(φ) can be created in O(n) time, and that it fits in a O(n)×O(n)
grid, by using Rosenstiehl and Tarjan’s algorithm ([10]).

3 Gadgets

In this section we describe wire, NOT gates, and AND gates, which form the re-
quired gadgets. The functionality of our gadgets depends on the coverings of a
certain 8× 8 subgrid.

Lemma 1. Let R be a rectilinear grid, with an 8 × 8 subgrid, S. If a domino
crosses the boundary of S in a domino tatami covering of R, then at least one
corner of S is also covered by a domino that crosses its boundary.

Proof. Suppose R is covered by dominoes, and consider those dominoes which
cover S. Such a cover may not be exact, in the sense that a domino may cross
the boundary of S. If we consider all such dominoes to be monominoes within S,
we obtain a monomino-domino covering of S. This covering inherits the tatami
restriction from the covering of R, so it is one of the 8 × 8 monomino-domino
coverings enumerated in [6] (and/or [5]).

The proof of Lemma 4 in [6] (third paragraph) states that there is a monomino
in at least one corner of S if 0 < m < n; Corollary 2 of [5] states that there is
a monomino in at least one corner of S if m = n (see examples in Fig. 2). This
monomino corresponds to a domino which crosses the boundary in a corner of
S, as required. �

Fig. 2. All monomino-domino tatami coverings of the square have at least one
monomino in their corners (see [5, 6]). The squares in R(φ) have isolate corners, so
these must be covered in exactly one of the two ways given by Exercise 7.1.4.215 in [7],
shown in Fig. 3(a).
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The rectilinear region R(φ) incorporates a network of 8 × 8 squares, whose
centres reside on a 16Z × 16Z grid, and whose corners form part of the boundary
of R(φ). Lemma 1 implies that no domino may cross their boundaries, and thus
each one must be covered in one of the two ways shown in Fig. 3(a). (For proofs
see [12] and Exercise 215, Section 7.1.4 in [7]).

The coverings of these squares are related to each other by connecting regions.
The part of an 8× 8 square which borders on a connector may be covered either
by two tiles, denoted by F to signify “false”, or three tiles, denoted by T to
signify “true” (see Fig. 3(a)). Note that the covering of a square is not T or F by
itself, because connectors below and beside it would meet the square at differing
interfaces.

A connector, which imposes a relationship between the coverings of a set of
8 × 8 squares, is verified by showing that it can be covered if and only if the
relationship is satisfied. The connectors we describe were generated with SAT-
solvers, but they are simple enought that we can verify them by hand, as is done
below.

NOT gate. The NOT gate interfaces with two 8×8 squares (see Fig. 3(a)), and can
be covered if and only if these squares are covered with differing configurations.

TF

(a) NOT gate with F and T interfaces.

(b) F−→T. (c) T−→F.

1

(d) F−→F.

1

2

3

5
4

6
7

8

9

(e) T−→T.

Fig. 3. NOT gate can be covered if and only if the input differs from the output. Num-
bered tiles indicate the (non-unique) ordering in which their placement is forced. Red
dotted lines indicate how domino coverings are impeded in (d) and (e).

Wire gadget. Wire transmits T or F through a sequence of squares (see Fig. 4(a)).
A turn may incorporate a NOT gate in order to maintain the same configuration
(see Fig. 4(b)).

AND gate. The AND gate interfaces with two 8×8 input squares, and one output
square (see Fig. 5). It can be covered with dominoes if and only if the output
value is the AND of the inputs (see Figs. 6 and 7).
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(a) Unit of wire, carrying T.

Input F

(b) Wire branch and turn, carrying F.

Fig. 4. Wire gadget.

T

T T

Inputs Output

Fig. 5. AND gate with input (T,T).

Variable gadget. We use a vertical segment of wire. The variable gadget is set to
T or F by choosing the appropriate covering of one of its 8× 8 squares. Its value
(or its negation) is propagated to clause gadgets via horizontal wire gadgets,
representing edges.

Clause gadget. The clause gadget is a circuit for ¬(ā∧ (b̄∧ c̄)), or the equivalent
with fewer inputs, ending in a configuration that can be covered if and only if the
output signal of the circuit is T. To satisfy the layout requirements, the inputs
to the clause are vertically translated by wire (see Fig. 8).
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T

T T

In Out

(a) TT−→T.

T

F F

In Out

(b) TF−→F.

F

T F

In Out

(c) FT−→F.

F

F F

In Out

(d) FF−→F.

Fig. 6. AND gate coverings.

*

F T

In Out

(a) *F−→T.

F

* T

In Out

(b) F*−→T.

T

T F

In Out

(c) TT−→F.

Fig. 7. Impossible AND gate coverings, where * denotes F or T.

4 Layout

Let G(φ) be a planar embedding of the Boolean 3CNF formula φ, using Rosen-
stiehl and Tarjan’s ([10]) algorithm, so that each vertex is represented by a
vertical line segment, and each edge is represented by a horizontal line segment.
All parts lie on integer grid lines, inside of a O(n)×O(n) grid, where n = |U∪C|,
and the embedding is found in O(n) time.

There exists a constant K, which is the same for any planar 3CNF formula,
such that G(φ) can be scaled to fit on the nK ×nK grid, and its parts replaced
by the gadgets described above. This ensures that R(φ) has O(n2) corners, and
can also be created in O(n) time.

The variable gadget is connected to edges by branches. The layout of G(φ)
prevents conflicts between edges meeting the variable gadget on the same side,
while two edges can meet the left and right sides of the variable gadget without
interfering with each other. The inputs of the clause gadget are symmetric, so
there are no conflicts when connecting these to horizontal edges (see Fig. 8(a)).
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(a)

T

F

(b) End of clause.

Fig. 8. A three input clause gadget from the circuit ¬(ā∧(b̄∧c̄)). Vertical wire translates
horizontal inputs without changing the signal. The end of the clause is coverable if and
only if its signal is T.

Example. The planar Boolean formula from Figure 1 in [9] gives the DTC instance
in Fig. 9.

b

a

d b ∨ d̄

a ∨ b̄ ∨ c

c

Fig. 9. An instance of DTC for the formula (a ∨ b̄ ∨ c) ∧ (b ∨ d̄).
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5 SAT solver

The search for logical gates required fast testing of small DTC instances. We
reduced DTC to SAT in order to use the SAT solver, Minisat ([3]), and efficiently
test candidate regions connecting 8×8 squares while satisfying the conditions of
the desired gate. The DTC solver was also allowed to make certain decisions about
the region, rather than simply testing regions generated by another program.

Our search algorithm requires the following inputs:

– an r × c rectangle of grid squares, partitioned into pairwise disjoint sets
K,X,A,C; and,

– a set of partial (good) coverings, G, and partial (bad) coverings, B, of C.

The output, R, is the region A′ ∪ K, where A′ ⊆ A, which satisfies the
following constraints.

(g) There exist coverings of R which form partial tatami domino coverings with
each element of G.

(b) There exists no covering of R which forms a partial tatami domino covering
with an element of B.

The outer loop of the search algorithm calls the SAT-solver to find a region
that satisfies all elements of G, and avoids a list of forbidden regions, which is
initially empty. Upon finding such a region, the inner loop checks whether the
region satisfies any element of B. The search succeeds when (g) and (b) are both
satisfied, and fails if the outer loop’s SAT instance has no satisfying assignment.

The search space grows very quickly for several reasons, not least of which is
the fact that 2160 regions are possible within the 20 × 8 rectangle occupied by
our AND gate (if corners are allowed to meet one another). In addition, the list of
forbidden regions, L, becomes too large for the SAT solver to handle efficiently.

We used two heuristics on the inputs to obtain a feasible search. The first
was searching for a smaller AND gate, which we modified to fit the placement of
the 8× 8 squares. The second was choosing forbidden squares, X, and required
squares, K, to reduce the number of trivially useless regions that are tested.

5.1 DTC as a Boolean formula

The SAT instances used above are modifications of a formula which is satisfiable
if and only if a given region has a domino tatami covering.

Let R be the region we want to cover, and consider the graph whose vertices
are the grid squares of R, and whose edges connect vertices of adjacent grid
squares. Let H be the set of horizontal edges and let V be the set of vertical
edges. The variables of the SAT instance are H ∪ V , and those variables set to
true in a satisfying assignment are the dominoes in the covering. The clauses are
as follows, where h, h′ ∈ H and v, v′ ∈ V .

1. Ensure a matching: For each pair of incident horizontal edges (h, h′), require
the clause h̄ ∨ h̄′, and similarly for (v, v′), (h, v).
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2. Ensure the matching is perfect: For each set of edges {h, h′, v, v′}, which are
incident to a vertex, require the clause h ∨ h′ ∨ v ∨ v′.

3. Enforce the tatami restriction: For each 4-cycle, hvh′v′, require the clause
h ∨ h′ ∨ v ∨ v′.

6 Variations and future work

There are other locally constrained covering problems that are easily represented
as Boolean formulae. Some of these are obviously polynomial, such as monomino-
domino tatami covering, but others may be NP-complete. SAT-solvers can some-
times be used in such problems to create elaborate gadgets, which may help find
a hardness reduction.

An example problem, whose computational complexity is open, is Lozenge
Tatami Covering. This problem is the decision about whether or not a finite
sub-grid of the triangular lattice can be covered with lozenges, such that no
more than 4 lozenges meet at any point. A structure similar to that of tatami
coverings occurs for this constraint (see Fig. 10).

Fig. 10. A triangle-lozenge tatami covering.

Our main question about DTC is the complexity of the case where the region
is simply connected (no holes). We believe that the problem is still NP-complete,
but a completely new approach will be required.

Secondarily, we are interested in H-transverse perfect matchings for H and G
other than C4 and grid-graphs. Are there other H-transverse perfect matchings
of interest which induce a tatami-like global structure in the containing graph?

Another variant, mildly advocated by Don Knuth (personal communication),
concerns inner corners of the coverings, such as occurs at the upper left in the
letter T in Figure 1. If corners such as these, where a + occurs, are forbidden
but corners such as the upper right one in the I are allowed (a ⊥ shape or one
of its rotations), then the nature of tatami coverings changes. The complexity
of such coverings is unknown.
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